Are DNA repair factors promising biomarkers for personalized therapy in gastric cancer?
نویسندگان
چکیده
Chronic inflammation is a driving force for gastric carcinogenesis. Reactive oxygen species (ROS) generated during the inflammatory process generates DNA damage that is processed through the DNA repair pathways. In this study, we profiled key DNA repair proteins (single-strand-selective monofunctional uracil-DNA glycosylase 1 [SMUG1], Flap endonuclease 1 [FEN1], X-ray repair cross-complementing gene 1 [XRCC1], and Ataxia telangiectasia mutated [ATM]) involved in ROS-induced oxidative DNA damage repair in gastric cancer and correlated to clinicopathological outcomes. High expression of SMUG1, FEN1, and XRCC1 correlated to high T-stage (T3/T4) (p-values: 0.001, 0.005, and 0.02, respectively). High expression of XRCC1 and FEN1 also correlated to lymph node-positive disease (p-values: 0.009 and 0.02, respectively). High expression of XRCC1, FEN1, and SMUG1 correlated with poor disease-specific survival (DSS) (p-values: 0.001, 0.006, and 0.05, respectively) and poor disease-free survival (DFS) (p-values: 0.001, 0.001, and 0.02, respectively). Low expression of ATM correlated to lymph node positivity (p=0.03), vascular invasion (p=0.05), and perineural invasion (p=0.005) and poor DFS (p=0.001) and poor DSS (p=0.003). In the multivariate Cox model, high XRCC1 and low ATM were independently associated with poor survival (p=0.008 and 0.011, respectively). Our observation supports the hypothesis that DNA repair factors are promising biomarkers for personalized therapy in gastric cancer.
منابع مشابه
Residual DNA double strand breaks correlates with excess acute toxicity from radiotherapy
Introduction: A high risk for development of severe side effects after radiotherapy may be correlated with high cellular radiosensitivity. To enhance radiation therapy efficiency a fast and reliable in-vitro test is desirable to identify radiosensitive patients. The aim of present study was to identify the mechanism of radiation induced DNA double-strand breaks (DSBs) and DSB r...
متن کاملScenario and future prospects of microRNAs in gastric cancer: A review
Carcinoma of the stomach is one of the major prevalent and principal causes of cancer-related deaths worldwide. Current advancement in technology has improved the understanding of the pathogenesis and pathology of gastric cancers (GC). But, high mortality rates, unfavorable prognosis and lack of clinical predictive biomarkers provide an impetus to investigate novel early diagnostic/prognostic m...
متن کاملDNA repair in cancer: emerging targets for personalized therapy
Genomic deoxyribonucleic acid (DNA) is under constant threat from endogenous and exogenous DNA damaging agents. Mammalian cells have evolved highly conserved DNA repair machinery to process DNA damage and maintain genomic integrity. Impaired DNA repair is a major driver for carcinogenesis and could promote aggressive cancer biology. Interestingly, in established tumors, DNA repair activity is r...
متن کاملRole of Biomarkers in the Development of PARP Inhibitors.
Defects in DNA repair lead to genomic instability and play a critical role in cancer development. Understanding the process by which DNA damage repair is altered or bypassed in cancer may identify novel therapeutic targets and lead to improved patient outcomes. Poly(adenosine diphosphate-ribose) polymerase 1 (PARP1) has an important role in DNA repair, and novel therapeutics targeting PARP1 hav...
متن کاملEvaluation of the Prognostic Value and TRIP13 gene Expression in Gastric Cancer
Introduction: Gastric cancer is a major public health issue worldwide. The factors that initiate cancer are not well understood, however aberrant expression of genes is associated with this cancer. TRIP13 plays pivotal roles in meiotic recombination, DNA repair, and cell cycle progression. An increasing body of evidence suggests that TRIP13 may possess functions other than meiosis and mitosis, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antioxidants & redox signaling
دوره 18 18 شماره
صفحات -
تاریخ انتشار 2013